Voltage-sensitive dye imaging of population neuronal activity in cortical tissue.

نویسندگان

  • Wenjun Jin
  • Ren-Ji Zhang
  • Jian-young Wu
چکیده

Voltage-sensitive dyes (VSDs) and optical imaging are useful for studying spatiotemporal patterns of population neuronal activity in cortical tissue. Using a photodiode array and absorption dyes we were able to detect neuronal activity in single trials before it could be detected by local field potential (LFP) recordings. Simultaneous electrical and optical recordings from the same tissue also showed that VSD and LFP signals have different waveforms during different activities, suggesting that they are sensitive to different aspects of the synchronization across the population. Noise, dye bleaching, phototoxicity and optical filter selection are important to the quality of the VSD signal and are discussed in this report. With optimized signal-to-noise ratio (S/N) and total recording time, we can optically monitor approximately 500 locations in an area of 1 mm(2) of cortical tissue with a sensitivity comparable to that of LFP electrodes. The total recording time and S/N of fluorescence and absorption dyes are also compared. At S/N of 8-10, absorption dye NK3630 allows a total recording time of 15-30 min, which can be divided into hundreds of 4-8 s recording trials over several hours, long enough for many kinds of experiments. In conclusion, the VSD method provides a reliable way for examining neuronal activity and pharmacological properties of synapses in brain slices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging.

Recent advances in our understanding of brain function have come from using light to either control or image neuronal activity. Here we describe an approach that combines both techniques: a micromirror array is used to photostimulate populations of presynaptic neurons expressing channelrhodopsin-2, while a red-shifted voltage-sensitive dye allows optical detection of resulting postsynaptic acti...

متن کامل

Innovative Methodology High Precision and Fast Functional Mapping of Cortical Circuitry Through a Novel Combination of Voltage Sensitive Dye Imaging and Laser Scanning Photostimulation

Xu X, Olivas ND, Levi R, Ikrar T, Nenadic Z. High precision and fast functional mapping of cortical circuitry through a novel combination of voltage sensitive dye imaging and laser scanning photostimulation. J Neurophysiol 103: 2301–2312, 2010. First published February 3, 2010; doi:10.1152/jn.00992.2009. The development of modern neuroscience tools is critical for deciphering brain circuit orga...

متن کامل

A biophysical cortical column model for optical signal analysis. (Un modèle biophysique de colonne corticale pour l'analyse du signal d'imagerie optique)

Voltage-sensitive dye imaging (VSDI) is a powerful modern neuroimaging technique whose application is expanding worldwide because it offers the possibility to monitor the neuronal activation of a large population with high spatial and temporal resolution. In this thesis, we investigate the biological sources of the voltage-sensitive dye signal (VSD signal), since this question remains unresolve...

متن کامل

Mesoscale infraslow spontaneous membrane potential fluctuations recapitulate high-frequency activity cortical motifs.

Neuroimaging of spontaneous, resting-state infraslow (<0.1 Hz) brain activity has been used to reveal the regional functional organization of the brain and may lead to the identification of novel biomarkers of neurological disease. However, these imaging studies generally rely on indirect measures of neuronal activity and the nature of the neuronal activity correlate remains unclear. Here we sh...

متن کامل

In vivo fluorescence microscopy of neuronal activity in three dimensions by use of voltage-sensitive dyes.

We report in vivo imaging of neuronal electrical activity from superficial layers of the mouse barrel cortex. The measurements have approximately 16-microm spatial and 3-ms temporal resolution and reach depths of 150 microm below the cortical surface. The depth-dependent differential-fluorescence optical sections of activity are consistent with known cortical architecture and represent an impor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 115 1  شماره 

صفحات  -

تاریخ انتشار 2002